JOHN D. ANDERSON, JR.

# Computational Fluid Dynamics

# COMPUTATIONAL FLUID DYNAMICS The Basics with

Applications

## John D. Anderson, Jr.

Department of Aerospace Engineering University of Maryland



DE 274

339/4121 INSTITUT FÜR METEOROLOGIE U. KLIMATOLOGIE UNIVERSITÄT HANNOVER HERRENHÄUSER STR. 2 - 30419 HANNOVER

### McGraw-Hill, Inc.

New York St. Louis San Francisco Auckland Bogotá Caracas Lisbon London Madrid Mexico City Milan Montreal New Delhi San Juan Singapore Sydney Tokyo Toronto

# CONTENTS

# Preface

### xix

# Part I Basic Thoughts and Equations

| 1 | Phi        | ilosophy of Computational Fluid Dynamics                                                                                                                      | 3  |  |  |  |
|---|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
|   | 1.1        | Computational Fluid Dynamics: Why?                                                                                                                            | 4  |  |  |  |
|   | 1.2        | Computational Fluid Dynamics as a Research Tool                                                                                                               | 6  |  |  |  |
|   | 1.3        | Computational Fluid Dynamics as a Design Tool                                                                                                                 | 9  |  |  |  |
|   | 1.4        | The Impact of Computational Fluid Dynamics-Some Other                                                                                                         |    |  |  |  |
|   | Examples   |                                                                                                                                                               |    |  |  |  |
|   |            | 1.4.1 Automobile and Engine Applications                                                                                                                      | 14 |  |  |  |
|   |            | 1.4.2 Industrial Manufacturing Applications                                                                                                                   | 17 |  |  |  |
|   |            | 1.4.3 Civil Engineering Applications                                                                                                                          | 19 |  |  |  |
|   |            | 1.4.4 Environmental Engineering Applications                                                                                                                  | 20 |  |  |  |
|   |            | 1.4.5 Naval Architecture Applications (Submarine Example)                                                                                                     | 22 |  |  |  |
|   | 1.5        | Computational Fluid Dynamics: What Is It?                                                                                                                     | 23 |  |  |  |
|   | 1.6        | The Purpose of This Book                                                                                                                                      | 32 |  |  |  |
|   |            |                                                                                                                                                               |    |  |  |  |
| 2 | The<br>Phy | e Governing Equations of Fluid Dynamics:<br>eir Derivation, a Discussion of Their<br>vsical Meaning, and a Presentation of Forms<br>ticularly Suitable to CFD | 37 |  |  |  |
|   | 2.1        | Introduction                                                                                                                                                  | 38 |  |  |  |
|   |            | Models of the Flow                                                                                                                                            | 40 |  |  |  |
|   | 2.2        | 2.2.1 Finite Control Volume                                                                                                                                   | 40 |  |  |  |
|   |            | 2.2.1 Infinitesimal Fluid Element                                                                                                                             | 41 |  |  |  |
|   |            |                                                                                                                                                               | 42 |  |  |  |
|   |            | 2.2.3 Some Comments                                                                                                                                           | 42 |  |  |  |

- 2.3 The Substantial Derivative (Time Rate of Change Following a Moving Fluid Element
- 2.4 The Divergence of the Velocity: Its Physical Meaning 2.4.1 A Comment

xi

43

47

48

|     | 2.5  | The Continuity Equation                                       | 49  |
|-----|------|---------------------------------------------------------------|-----|
|     |      | 2.5.1 Model of the Finite Control Volume Fixed in Space       | 49  |
|     |      | 2.5.2 Model of the Finite Control Volume Moving with the      |     |
|     |      | Fluid                                                         | 51  |
|     |      | 2.5.3 Model of an Infinitesimally Small Element Fixed         |     |
|     |      | in Space                                                      | 53  |
|     |      | 2.5.4 Model of an Infinitesimally Small Fluid Element         |     |
|     |      | Moving with the Flow                                          | 55  |
|     |      | 2.5.5 All the Equations Are One: Some Manipulations           | 56  |
|     |      | 2.5.6 Integral versus Differential Form of the Equations:     |     |
|     |      | An Important Comment                                          | 60  |
|     | 2.6  | The Momentum Equation                                         | 60  |
|     | 2.7  | The Energy Equation                                           | 66  |
|     | 2.8  | Summary of the Governing Equations for Fluid Dynamics:        |     |
|     |      | With Comments                                                 | 75  |
|     |      | 2.8.1 Equations for Viscous Flow (the Navier-Stokes           |     |
|     |      | Equations)                                                    | 75  |
|     |      | 2.8.2 Equations for Inviscid Flow (the Euler Equations)       | 77  |
|     |      | 2.8.3 Comments on the Governing Equations                     | 78  |
|     | 2.9  | Physical Boundary Conditions                                  | 80  |
|     | 2.10 | Forms of the Governing Equations Particularly Suited for      |     |
|     |      | CFD: Comments on the Conservation Form, Shock Fitting,        |     |
|     |      | and Shock Capturing                                           | 82  |
|     | 2.11 | Summary                                                       | 92  |
|     |      | Problems                                                      | 93  |
| 2   | Ma   | thematical Dehavior of Dantial Differential                   |     |
| 3   |      | thematical Behavior of Partial Differential                   |     |
|     | -    | ations: The Impact on CFD                                     | 95  |
|     | 3.1  | Introduction                                                  | 95  |
|     | 3.2  | Classification of Quasi-Linear Partial Differential Equations | 97  |
|     | 3.3  | A General Method of Determining the Classification of         |     |
|     |      | Partial Differential Equations: The Eigenvalue Method         | 102 |
|     | 3.4  | General Behavior of the Different Classes of Partial          |     |
|     |      | Differential Equations: Impact on Physical and                |     |
|     |      | Computational Fluid Dynamics                                  | 105 |
|     |      | 3.4.1 Hyperbolic Equations                                    | 106 |
|     |      | 3.4.2 Parabolic Equations                                     | 111 |
|     |      | 3.4.3 Elliptic Equations                                      | 117 |
|     |      | 3.4.4 Some Comments: The Supersonic Blunt Body                |     |
|     |      | Problem Revisited                                             | 119 |
|     | 3.5  | Well-Posed Problems                                           | 120 |
|     | 3.6  | Summary                                                       | 121 |
|     |      | Problems                                                      | 121 |
| **  | D    |                                                               |     |
| 1.1 |      |                                                               |     |

# Part II Basics of the Numerics

| 4 | <b>Basic Aspects of Discretization</b> | 125 |
|---|----------------------------------------|-----|
|   | 4.1 Introduction                       | 125 |
|   | 4.2 Introduction to Finite Differences | 128 |

|   | <ul><li>4.3</li><li>4.4</li><li>4.5</li><li>4.6</li></ul> | Difference Equations<br>Explicit and Implicit Approaches: Definitions and Contrasts<br>Errors and an Analysis of Stability<br>4.5.1 Stability Analysis: A Broader Perspective<br>Summary | 142<br>145<br>153<br>165<br>165 |
|---|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
|   | G                                                         | UIDEPOST                                                                                                                                                                                 | 166                             |
|   |                                                           | Problems                                                                                                                                                                                 | 167                             |
| 5 | Gri                                                       | ds with Appropriate Transformations                                                                                                                                                      | 168                             |
|   | 5.1                                                       | Introduction                                                                                                                                                                             | 168                             |
|   | 5.2                                                       | General Transformation of the Equations                                                                                                                                                  | 171                             |
|   | 5.2                                                       | Metrics and Jacobians                                                                                                                                                                    | 178                             |
|   | 5.4                                                       | Form of the Governing Equations Particularly Suited                                                                                                                                      |                                 |
|   |                                                           | for CFD Revisited: The Transformed Version                                                                                                                                               | 183                             |
|   | 5.5                                                       | A Comment                                                                                                                                                                                | 186                             |
|   | 5.6                                                       | Stretched (Compressed) Grids                                                                                                                                                             | 186                             |
|   | 5.7                                                       | Boundary-Fitted Coordinate Systems; Elliptic Grid                                                                                                                                        |                                 |
|   |                                                           | Generation                                                                                                                                                                               | 192                             |
|   | C                                                         | UIDEPOST                                                                                                                                                                                 | 193                             |
|   | U                                                         | UIDEI USI                                                                                                                                                                                | 195                             |
|   | 5.8                                                       | Adaptive Grids                                                                                                                                                                           | 200                             |
|   | 5.9                                                       | Some Modern Developments in Grid Generation                                                                                                                                              | 208                             |
|   | 5.10                                                      | Some Modern Developments in Finite-Volume Mesh                                                                                                                                           |                                 |
|   |                                                           | Generation: Unstructured Meshes and a Return to Cartesian                                                                                                                                |                                 |
|   | -                                                         | Meshes                                                                                                                                                                                   | 210                             |
|   | 5.11                                                      | Summary                                                                                                                                                                                  | 212                             |
|   |                                                           | Problems                                                                                                                                                                                 | 215                             |
| 6 | Son                                                       | ne Simple CFD Techniques: A Beginning                                                                                                                                                    | 216                             |
| U | 6.1                                                       | Introduction                                                                                                                                                                             | 216                             |
|   | 6.2                                                       | The Lax-Wendroff Technique                                                                                                                                                               | 217                             |
|   | 6.3                                                       | MacCormack's Technique                                                                                                                                                                   | 222                             |
|   |                                                           | -                                                                                                                                                                                        |                                 |
|   | GUL                                                       | DEPOST                                                                                                                                                                                   | 223                             |
|   | 6.4                                                       | Some Comments: Viscous Flows, Conservation Form,                                                                                                                                         |                                 |
|   |                                                           | and Space Marching                                                                                                                                                                       | 225                             |
|   |                                                           | 6.4.1 Viscous Flows                                                                                                                                                                      | 225                             |
|   |                                                           | 6.4.2 Conservation Form                                                                                                                                                                  | 225                             |
|   |                                                           | 6.4.3 Space Marching                                                                                                                                                                     | 226                             |
|   | 6.5                                                       | The Relaxation Technique and Its Use with Low-Speed                                                                                                                                      |                                 |
|   |                                                           | Inviscid Flow                                                                                                                                                                            | 229                             |
|   | 6.6                                                       | Aspects of Numerical Dissipation and Dispersion; Artificial                                                                                                                              |                                 |
|   |                                                           | Viscosity                                                                                                                                                                                | 232                             |
|   | 6.7                                                       | The Alternating-Direction-Implicit (ADI) Technique                                                                                                                                       | 243                             |
|   | 6.8                                                       | The Pressure Correction Technique: Application                                                                                                                                           |                                 |
|   |                                                           | to Incompressible Viscous Flow                                                                                                                                                           | 247                             |
|   |                                                           | 6.8.1 Some Comments on the Incompressible                                                                                                                                                |                                 |
|   |                                                           | Navier-Stokes Equations                                                                                                                                                                  | 248                             |

|      | 6.8.2  | Some Comments on Central Differencing of the     |     |
|------|--------|--------------------------------------------------|-----|
|      |        | Incompressible Navier-Stokes Equations; The Need |     |
|      |        | for a Staggered Grid                             | 250 |
|      | 6.8.3  | The Philosophy of the Pressure Correction Method | 253 |
|      | 6.8.4  | The Pressure Correction Formula                  | 254 |
|      | 6.8.5  | The Numerical Procedure: The SIMPLE Algorithm    | 261 |
|      | 6.8.6  | Boundary Conditions for the Pressure Correction  |     |
|      |        | Method                                           | 262 |
| G    | UIDEP  | OST                                              | 264 |
| 6.9  | Some   | Computer Graphic Techniques Used in CFD          | 264 |
| 0.7  | 6.9.1  | xy Plots                                         | 264 |
|      |        | Contour Plots                                    | 265 |
|      |        | Vector and Streamline Plots                      | 270 |
|      |        | Scatter Plots                                    | 273 |
|      |        | Mesh Plots                                       | 273 |
|      |        | Composite Plots                                  | 274 |
|      | 6.9.7  | Summary on Computer Graphics                     | 274 |
| 6.10 |        |                                                  | 277 |
| 0.10 | Proble |                                                  | 278 |
|      | 110010 |                                                  | 210 |

# Part III Some Applications

| 7 | Numerical Solutions of Quasi-One-Dimensional |                                                           |     |  |
|---|----------------------------------------------|-----------------------------------------------------------|-----|--|
|   | No                                           | zzle Flows                                                | 283 |  |
|   | 7.1                                          | Introduction: The Format for Chapters in Part III         | 283 |  |
|   | 7.2                                          | Introduction to the Physical Problem: Subsonic-Supersonic |     |  |
|   |                                              | Insentropic Flow                                          | 285 |  |
|   | 7.3                                          | CFD Solution of Subsonic-Supersonic Isentropic Nozzle     |     |  |
|   |                                              | Flow: MacCormack's Technique                              | 288 |  |
|   |                                              | 7.3.1 The Setup                                           | 288 |  |
|   |                                              | 7.3.2 Intermediate Results: The First Few Steps           | 308 |  |
|   |                                              | 7.3.3 Final Numerical Results: The Steady-State Solution  | 313 |  |
|   | 7.4                                          | CFD Solution of Purely Subsonic Isentropic Nozzle Flow    | 325 |  |
|   |                                              | 7.4.1 The Setup: Boundary and Initial Conditions          | 327 |  |
|   |                                              | 7.4.2 Final Numerical Results: MacCormack's Technique     | 330 |  |
|   |                                              | 7.4.3 The Anatomy of a Failed Solution                    | 325 |  |
|   | 7.5                                          | The Subsonic-Supersonic Isentropic Nozzle Solution        |     |  |
|   |                                              | Revisited: The Use of the Governing Equations in          |     |  |
|   |                                              | Conservation Form                                         | 336 |  |
|   |                                              | 7.5.1 The Basic Equations in Conservation Form            | 337 |  |
|   |                                              | 7.5.2 The Setup                                           | 340 |  |
|   |                                              | 7.5.3 Intermediate Calculations: The First Time Step      | 345 |  |
|   |                                              | 7.5.4 Final Numerical Results: The Steady State Solution  | 351 |  |

|   | 7.6 | 1 0                                                        | 356        |
|---|-----|------------------------------------------------------------|------------|
|   |     |                                                            |            |
|   |     | 7.6.1 The Setup                                            | 358        |
|   |     | 7.6.2 The Intermediate Time-Marching Procedure:            |            |
|   |     | The Need for Artificial Viscosity                          | 363        |
|   |     | 7.6.3 Numerical Results                                    | 364        |
|   | 7.7 | Summary                                                    | 372        |
| 8 |     | nerical Solution of a Two-Dimensional                      |            |
|   | Sup | ersonic Flow: Prandtl-Meyer Expansion                      |            |
|   | Way | ve                                                         | 374        |
|   | 8.1 | Introduction                                               | 374        |
|   | 8.2 | Introduction to the Physical Problem: Prandtl-Meyer        |            |
|   |     | Expansion Wave-Exact Analytical Solution                   | 376        |
|   | 8.3 | The Numerical Solution of a Prandtl-Meyer Expansion Wave   |            |
|   |     | Flow Field                                                 | 377        |
|   |     | 8.3.1 The Governing Equations                              | 377        |
|   |     | 8.3.2 The Setup                                            | 386        |
|   |     | 8.3.3 Intermediate Results                                 | 397        |
|   |     | 8.3.4 Final Results                                        | 407        |
|   | 8.4 | Summary                                                    | 414        |
| 9 | Inc | ompressible Couette Flow: Numerical                        |            |
| 9 |     | utions by Means of an Implicit Method                      |            |
|   |     | the Pressure Correction Method                             | 416        |
|   | 9.1 | Introduction                                               | 416        |
|   | 9.2 | The Physical Problem and Its Exact Analytical Solution     | 417        |
|   | 9.3 | The Numerical Approach: Implicit Crank-Nicholson           |            |
|   |     | Technique                                                  | 420        |
|   |     | 9.3.1 The Numerical Formulation                            | 421        |
|   |     | 9.3.2 The Setup                                            | 425        |
|   |     | 9.3.3 Intermediate Results                                 | 426        |
|   |     | 9.3.4 Final Results                                        | 430        |
|   | 9.4 | Another Numerical Approach: The Pressure Correction Method | 435        |
|   |     | 9.4.1 The Setup                                            | 436        |
|   |     |                                                            | 110        |
|   |     | 9.4.2 Results                                              | 442        |
|   | 9.5 | 9.4.2 Results<br>Summary                                   | 442<br>445 |

### 10 Supersonic Flow over a Flat Plate: Numerical Solution by Solving the Complete Navier-Stokes Equations 447 10.1 Introduction 447 449 10.2 The Physical Problem 10.3 The Numerical Approach: Explicit Finite-Difference Solution of the Two-Dimensional Complete Navier-Stokes 450 Equations 450 10.3.1 The Governing Flow Equations 452 10.3.2 The Setup

|      | 10.3.3  | The Finite-Difference Equations              | 453 |
|------|---------|----------------------------------------------|-----|
|      | 10.3.4  | Calculation of Step Sizes in Space and Time  | 455 |
|      | 10.3.5  | Initial and Boundary Conditions              | 457 |
| 10.4 | Organiz | zation of Your Navier-Stokes Code            | 459 |
|      | 10.4.1  | Overview                                     | 459 |
|      | 10.4.2  | The Main Program                             | 461 |
|      | 10.4.3  | The MacCormack Subroutine                    | 463 |
|      | 10.4.4  | Final Remarks                                | 466 |
| 10.5 | Final N | Jumerical Results: The Steady State-Solution | 466 |
| 10.6 | Summa   | ıry                                          | 474 |

| Part | IV | Other | Topics |
|------|----|-------|--------|
|      |    |       |        |

| 11 | Son  | ne Advanced Topics in Modern CFD:                     |     |
|----|------|-------------------------------------------------------|-----|
|    | AL   | Discussion                                            | 479 |
|    | 11.1 | Introduction                                          | 479 |
|    | 11.2 | The Conservation Form of the Governing Flow Equations |     |
|    |      | Revisited: The Jacobians of the System                | 480 |
|    |      | 11.2.1 Specialization to One-Dimensional Flow         | 482 |
|    |      | 11.2.2 Interim Summary                                | 489 |
|    | 11.3 | Additional Considerations for Implicit Methods        | 489 |
|    |      | 11.3.1 Linearization of the Equations: The Beam and   |     |
|    |      | Warming Method                                        | 490 |
|    |      | 11.3.2 The Multidimensional Problem: Approximate      |     |
|    |      | Factorization                                         | 492 |
|    |      | 11.3.3 Block Tridiagonal Matrices                     | 496 |
|    |      | 11.3.4 Interim Summary                                | 497 |
|    | 11.4 | Upwind Schemes                                        | 497 |
|    |      | 11.4.1 Flux-Vector Splitting                          | 500 |
|    |      | 11.4.2 The Godunov Approach                           | 502 |
|    |      | 11.4.3 General Comment                                | 507 |
|    | 11.5 | Second-Order Upwind Schemes                           | 507 |
|    | 11.6 | High-Resolution Schemes: TVD and Flux Limiters        | 509 |
|    | 11.7 | Some Results                                          | 510 |
|    | 11.8 | Multigrid Method                                      | 513 |
|    | 11.9 | Summary                                               | 514 |
|    |      | Problems                                              | 514 |
| 12 | The  | Future of CFD                                         | 515 |
|    | 12.1 | The Importance of CFD Revisited                       | 515 |
|    | 12.2 | Computer Graphics in CFD                              | 516 |
|    | 12.3 |                                                       | 517 |
|    | 12.4 |                                                       | 526 |
|    | 12.5 | Conclusion                                            | 533 |

|            | Thomas' Algorithm for the<br>Tridiagonal System of Equations | 534 |
|------------|--------------------------------------------------------------|-----|
| References |                                                              | 539 |
| Index      |                                                              | 543 |